



### **Power Management**







### **Our speakers**



### Venkat Rajaraman

- Founder/CEO of Cygni Energy
- Advisory Committee member of National Centre for Photovoltaic Research and Education (NCPRE), India
- Over 20 years of experience in Product Design and Engineering Management.
- Previously he was the CEO of Solarsis and Su-Kam Power Systems
- Holds a BE from Madurai-Kamaraj University and a Master's degree in Electrical Engineering from Stanford University

### David Tusubira

- Chief Technology Officer & Co-founder of Innovex.
- Hardware developer with a background in robotics.
- Using IoT(Internet of Things) technology to promote access to solar energy in SSAfrica.
- Holds a bachelor's degree in Electrical Engineering from Makerere University.





### **Power Management**

### Venkat Rajaraman – Cygni Energy



# **CYGNI Energy**

cygr

Powering a billion Dreams

Venkat Rajaraman Founder / CEO Cygni Energy Private Limited E: venkat@cygni.com

# CYGNI – EXECUTIVE SUMMARY

#### 01

October 2014: Cygni Incubated Madras



| Cygni Incubated at IIT-                              |                                                                                 |                                                                                                    | Micro    |
|------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------|
| Madras                                               | Key Notes                                                                       | lechnology                                                                                         | Awa      |
|                                                      | ≈ Confluence of Solar, Storage and<br>Energy Efficient Appliances               | <ul> <li>≈ 'Inverterless' Solar DC (Low-<br/>Voltage 48V)</li> </ul>                               |          |
| 、<br>次                                               | <ul> <li>Started with focus on Solar-DC and<br/>DC Bus Architectures</li> </ul> | <ul> <li>≈ Power cost is greatly reduced<br/>(40-50%)</li> </ul>                                   |          |
|                                                      | ≈ Technology developed in collaboration with IITM                               | <ul> <li>DC Microgrid solutions for<br/>energy cost optimization and<br/>sustainability</li> </ul> |          |
|                                                      |                                                                                 |                                                                                                    |          |
| 02                                                   | 03                                                                              | 04                                                                                                 |          |
| October 2016:                                        | December 2017:                                                                  | February 2018:                                                                                     |          |
| First large project with 4,000<br>homes in Rajasthan | First Li-ion product deployed<br>in Assam                                       | BIS standards announced for<br>LVDC electrification @ 48V                                          | Raised 1 |

DC

#### 06

May 2019: ogrid for Greater Good ard in San Diego, USA



#### 05

August 2018: funding of \$6.4 Million



# ENERGY 2.0

#### DECENTRALIZED

Local power generation instead of Centralized Grid

#### DECARBONIZATION

Clean and efficient utilization of solar for powering homes



Technological innovation to cater to growing energy demands

#### DEMOCRATIZATION

Peer to peer energy transfer to ensure efficient use at consumer level

#### DIGITAZATION

IoT integration to make energy usage more transparent



# DC ECOSYSTEM EVOLUTION



7



Solar Water Pumps



Electric Vehicles – Batteries & Chargers





Hybrid Solar-DG Solutions



Productive use applications



# DC ADOPTION everywhere!

### Inverterless Technology





Solar Inverters

Cygni Inverterless

# AC/DC Hybrid System



FEATURES Solar and Grid Input Upto 5 kWh Lithium Battery 230V AC Output 48V DC Output Remote Energy Monitoring

# LET IN THE SUN

### **Product Portfolio**



#### Inverterless (upto 1kW)

- Seamlessly integrates solar, grid and battery.
- ≈ Integrated Li-Ion Battery
- ≈ Smart Load Control
- ≈ Prioritized source selection



Inverterless Variants (125W - 1kW)

- ≈ Inverterless Standalone
- ≈ Inverterless Lite & Standard
- ≈ Inverterless Pro & Duo
- ≈ Upto 1kW Capacity



DASH (2.4 kW and multiples)

- A patented solar inverter for commercial and SOHO applications
- ≈ 2.4, 4.8 and 7.2 kW capacity and multiples thereof
- ≈ Customized enclosures

#### **KEY FEATURES**

- ≈ Remote monitoring and management
- ≈ DC digital metering 0.5 class accuracy
- ≈ Intelligent Solar MPPT control

- $\approx$  Meter reading integration with mobile Apps
- ≈ NoC with centralized management
- $\approx$  High efficiency at >96%

### **Productive Appliances**



Cygni is partnering with innovative companies to create energy efficient productive use appliances for rural usage

### Solar Powerlooms







### Solar Freezer / Chillers







# DC Tiny Grid (4/8/12 Homes)

Inverterless 4 Home System



### AC Vs DC Microgrids

#### Traditional AC Microgrid

#### DC Microgrid



### Every AC-DC or DC-AC conversion results in 4% to 20% power conversion loss!

### AC Vs DC Microgrid



Cygni Energy's Always ON Microgrid is the only available power solution that provides power both when the grid is available and when it is down, in perpetuity. No existing backup power option offers continuous power no matter the circumstances.

| Microgrids  |                             |                                   |                        |                  | Cygni        |                  |                        | Solo              |
|-------------|-----------------------------|-----------------------------------|------------------------|------------------|--------------|------------------|------------------------|-------------------|
|             | Grid                        | Diesel Generator                  | Battery                | Solar + Battery  | Cygni Energy | ost              |                        |                   |
| Duration    |                             | 24 hours                          | 2 hours                | 2 hours+         | AlwaysON     | fer co           |                        | GIId              |
| Reliability | Above Ground Power<br>Lines | Cold Start Issues                 | Needs to be<br>Charged | Intermittent     | AlwaysON     | Pow              |                        |                   |
| Fuel Supply |                             | Storage Tank or<br>Delivery Truck | Charges from Grid      | Dependent on Sun | Always ON    | Normal<br>Energy | With Solar<br>Inverter | With Cyg<br>Solar |
| Pollution   | NOx, SOx, PM                | NOx, SOx, PM                      | None                   | None             | None         | Consumption      |                        |                   |

# Block Diagram – Always ON Microgrid



### DC Microgrid: IITM Research Park, Chennai, India



- ✓ 1.2MW Solar on the Roof-top
- ✓ Solar integration with Incoming Grid.
- ✓ Two levels of DC Distribution: 380, 48V
- ✓ DC Appliances at 48V

- ✓ DC Based VAV, Thermostat Control
- ✓ Solar + DG + Grid + Battery Hybrid
- ✓ Client energy monitoring & billing
- ✓ DG usage option for clients

# CONCLUSION





EFFICIENCY FOR ACCESS

### Thank you

### Head Office (Hyderabad, India)

Second Floor, Lansum House, 283, Rd Number 78, Jubilee Hills, Telangana 500033 +91 40 2354 5001 venkat@cygni.com www.cygni.com





### **Power Management**

### David Tusubira – Innovex Uganda



### **INNOVEX**

### **About Innovex**

Started 2015, commercial in 2017

- IoT smart meter platform for solar systems and solar equipment, Remote solar monitoring and control
- Manufacture and distribute IoT hardware
- Data analytics, Machine learning & A.I
- B to B platform, 1,000 smart meters
- Operations in 5 countries; Uganda, Kenya, Tanzania, Ethiopia and DRC







### **Overview**

The major power management concerns.

- The key aspects of power management in off-grid PV solar systems.
- How data can be leveraged to address the key aspects.



### Concern



Cost



Return on Investment





Conversion efficiency

Usage, consumption

System sizing & design







### **Conversion efficiency**

- Sunlight to PV power (Panel array)
- PV power to battery charge (Charge controller)
- Battery charge to output power (Inverter... or not)

Appliances



### **innovex**

### Usage





### System misuse due to:

- Negligence
- Oblivion



### System sizing

- Inconsistency of the sun
- Panel array oversizing
- Battery bank oversizing
- System sizing too rudimentary



### **innov**=X

### **Data acquisition**

| What:                              | supply<br>voltage | supply<br>current | battery<br>voltage | panel<br>voltage | panel<br>current | time stamp     |
|------------------------------------|-------------------|-------------------|--------------------|------------------|------------------|----------------|
|                                    | 249.08            | 0.15              | 26.75              | 66.33            | 3.66             | 6/7/2020 13:26 |
| Indulation                         | 249.08            | 0.15              | 26.77              | 65.57            | 3.6              | 6/7/2020 13:26 |
| Weather forecast                   | 248.51            | 0.11              | 26.84              | 65.4             | 4.28             | 6/7/2020 13:26 |
|                                    | 248.51            | 0.15              | 26.74              | 65.69            | 3.85             | 6/7/2020 13:26 |
| PV power                           | 249.37            | 0.15              | 26.76              | 66.76            | 3.24             | 6/7/2020 13:26 |
| <ul> <li>Battery charge</li> </ul> | 248.23            | 0.15              | 26.84              | 65.86            | 3.95             | 6/7/2020 13:27 |
|                                    | 250.79            | 0.15              | 26.81              | 65.99            | 3.73             | 6/7/2020 13:27 |
| Consumption data                   | 249.37            | 0.15              | 26.8               | 66.64            | 3.9              | 6/7/2020 13:27 |
| o o nou np ton data                | 248.51            | 0.11              | 26.81              | 67.54            | 3.51             | 6/7/2020 13:27 |
|                                    | 248.23            | 0.15              | 26.77              | 65.1             | 4.1              | 6/7/2020 13:27 |
| How:                               | 248.8             | 0.15              | 26.73              | 65.03            | 3.67             | 6/7/2020 13:27 |
|                                    | 248.23            | 0.18              | 26.8               | 65.07            | 3.7              | 6/7/2020 13:27 |
| - IoT technology                   | 249.37            | 0.18              | 26.8               | 65.31            | 3.97             | 6/7/2020 13:28 |
| Ior technology                     | 249.37            | 0.11              | 26.79              | 65.88            | 3.67             | 6/7/2020 13:28 |
|                                    | 248.23            | 0.15              | 26.73              | 66.86            | 3.47             | 6/7/2020 13:28 |
|                                    | 250.22            | 0.15              | 26.82              | 69.14            | 4                | 6/7/2020 13:28 |
|                                    | 249.65            | 0.15              | 26.77              | 69.02            | 3.58             | 6/7/2020 13:28 |
|                                    | 248.51            | 0.11              | 26.71              | 68.96            | 4.47             | 6/7/2020 13:28 |
|                                    | 249.08            | 0.15              | 26.81              | 68.43            | 3.35             | 6/7/2020 13:29 |



### **Applying the data**

Remote switching

Identifying efficient components



 Usage influencing through notifications



# Thank you

David Tusubira Innovex Uganda davidtusubira@innovex.org





# Q&A



